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Summary

For a manned Mars mission, the selection of a
parking orbit is greatly influenced by the precession
caused by the oblateness of the planet. This preces-
sion also affects the departure condition for Earth
return and, therefore, the propellant and initial mass
required in low Earth orbit (LEO). Additionally,
the targeted parking orbit must also satisfy any sci-
ence and landing site accessibility requirements that
a mission might entail. Hence, the selection of a
Mars parking orbit for a particular mission cannot

be based purely on mission performance. Therefore,
a trade-off between mission performance, science re-
quirements, and landing site accessibility must be
made.

In this investigation, an initial opposition-class

mission with a 2017 Earth departure date, a total trip
time of 1.6 years, and a 60-day Mars stay time was
analyzed. Two parking orbit selection strategies were
considered. First, a parametric study was performed,
in which the inclination and eccentricity were varied
to determine the velocity increments (A V values) for
a range of Mars insertion and departure trajectories.
Second, an exact precession orbit was sought. This
orbit is defined as a parking orbit that would pre-
cess such that a tangential periapsis burn could be
performed at both arrival and departure. This or-
bit selection strategy was initiated to minimize the

arrival and departure AV values and simultaneously
enhance the potential to satisfy any science require-
ments. Because the parking orbit obtained from the
above two strategies affects the ascent and descent
conditions for the Mars excursion module (MEM),
the MEM mass was estimated for the various park-
ing orbit inclinations and eccentricities. Thus, how
the MEM affects the overall initial LEO mass can be
better understood.

In the parametric study, a specific inclination and
eccentricity of the parking orbit were targeted from
the inbound interplanetary asymptote. After the
60-day stay time, a three-dimensional (3-D) depar-
ture burn (i.e., a burn with an in-plane and an out-
of-plane AV component) was used at periapsis to
achieve the proper outbound hyperbola for return to
Earth. Additionally, the effect of departing from a
location other than periapsis was also analyzed in
this study. From these simulations, trends of ini-
tial LEO mass versus the inclination and eccentricity
of the parking orbit were developed. For the exact
precession study, the parking orbit inclination and
eccentricity were optimally selected such that tan-
gential periapsis burns could be performed at both
arrival and departure in order to match the depar-
ture hyperbolic requirements. General perceptions

suggest that an exact precession orbit should result
in the lowest initial LEO mass for a given parking
orbit eccentricity, because no change in direction of
the arrival or departure velocity vector is required.

This investigation shows that the AV necessary
to compensate for the precession of the parking or-
bit has a major effect on the initial LEO mass. As

a result, the inclination and eccentricity of the park-
ing orbit cannot be chosen arbitrarily, and a detailed
analysis must be performed to obtain an optimum
parking orbit. In this study, minimum initial LEO
masses were obtained for Mars parking orbits char-
acterized by having near-equatorial inclinations, high
eccentricities, and a 3-D departure burn. Because
they have poor planetary coverage characteristics,
near-equatorial inclination orbits are not desirable
from a science viewpoint. To enhance landing site
accessibility and the potential for satisfying science
requirements, a penalty in the initial LEO mass is
required. This study shows that this initial LEO
mass penalty can be minimized by using exact pre-
cession orbits characterized by low-to-moderate ec-
centricities (e = 0.2-0.5) and nonequatorial inclina-
tions (i -- 70°-140°). Additionally, this investigation
also shows that the use of retrograde orbits, where
i > 90°, can reduce the penalty in mission perfor-
mance even with the increase in MEM mass asso-

ciated with their use. Furthermore, the parametric
results indicate that periapsis is not the optimum lo-
cation for departure for most parking orbits. There-
fore, the departure true anomaly along with the in-
clination and eccentricity of the parking orbit must
also be considered in reducing the initial LEO mass.
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spacecraft mass prior to propulsive
maneuver, kg

Legendre polynomials

position of spacecraft, m
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out-of-orbital-plane angle defining

the departure burn direction, deg
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in-plane angle defining the depar-
ture burn direction, deg

gravitational parameter of Mars,

m3/sec 2

longitude of ascending node, deg

argument of periapsis, deg

true anomaly, deg

Committee on Space Research

low Earth orbit

liquid hydrogen

liquid oxygen

MEM

POST

SOI

Sol

SWISTO

3-D

Mars excursion module

Program to Optimize Simulated

Trajectories

sphere of influence

orbit with a period of one solar day

Swingby-Stopover Optimization

Program

three-dimensional

Introduction

Background and Objectives

The Sally Ride report "Leadership and America's

Future in Space" (ref. 1) and President Bush's speech

at the 20th anniversary of the Apollo Moon Landing

have sparked a renewed interest in a manned mis-
sion to Mars in the early 21st century. Recent stud-

ies have shown that numerous opportunities exist in
the 2010-2025 time frame for a chemically propelled,

high-thrust vehicle to perform a 1-2-year round-trip
mission that includes a 60-day stay time (refs. 2-5).

Although a significant amount of research has been
directed toward determining optimum interplanetary

trajectories for an Earth Mars manned mission, less
effort has been devoted to determining an appropri-

ate Mars parking orbit. Therefore, the primary fo-

cus of this study is to determine the effects of Mars

parking orbit selection on the overall mission pro-
file. In particular, parking orbit selection dictates

the propulsive requirements necessary for injection

into and departure from Mars orbit. A poor selec-

tion may result in an increase in the initial low Earth

orbit (LEO) spacecraft mass of 30-100 percent over
an ideal case (refs. 6 and 7).

Previous studies have focused on determining the

effects of Mars parking orbits on the overall mission

profile (refs. 6 and 7). However, most of the analy-

ses that were performed were based only on orbital

energy (i.e., the eccentricity of the parking orbit for
a given periapsis altitude). Detailed approach and

departure geometries of the parking orbit were not
taken into account. Furthermore, in most studies,

a spherical gravitational potential for Mars was as-
sumed; precession of the parking orbit (caused by the

oblateness of Mars) was not considered in the analy-

ses. Without precession, the arrival orbital geometry

remains fixed throughout the length of the stay time.

Therefore, the actual departure geometry was not
employed in these studies (refs. 2-7). Also in these

analyses, the departure burn for return to Earth was

assumed to be tangential; however, in actuality, geo-
metrical constraints may require this burn to be 3-D



(i.e., a burn with an in-planeand an out-of-plane
velocityincrement(AV) component).As a result,
thesepreliminarystudiesproducedoptimisticesti-
matesof thearrivalanddepartureburnsand,hence,
the initial LEOmass.Additionally,thesestudiesdid
not significantlyassessthe impactsof scientificre-
quirements(i.e.,orbitalobservationsor landingsite
accessibility)on theMarsmissionprofile. Thus,in
thesestudies,the choiceof the parkingorbit was
basedpurelyon missionperformance(initial LEO
mass).Toobtaina morerealisticinitial LEO mass,
a detailedanalysisof theparkingorbit is required.

The primaryobjectiveof this investigationwas
to identifytrendsandaspectsof Marsparkingorbits
for an initial mannedmission.In particular,park-
ing orbit selectionrequireda thoroughanalysisof
thefollowingparameters:(1)scientificrequirements,
(2) landingsiteaccessibility,(3) length-of-staytime,
(4) inclination,(5) periapsisaltitude, and (6) ec-
centricity. Furthermore,the effectsof orbital pre-
cessionresultingfrom the oblatenessof Marswere
alsoconsidered.A gravitationalmodelthat realisti-
callyaccountsfor this oblatenesswasusedto better
assesstheactualresultinggeometriescausedby the
precessionof the parkingorbit. Hence,the parking
orbit nolongerremainsfixedthroughoutthelength-
of-staytimebut precessesfromarrivalto departure.
Alsoin thisstrategy,thedepartureburnwasallowed
to vary three-dimensionallyas requiredto satisfy
theconstraintsimposedby theoutboundhyperbolic
trajectory.

A secondobjectiveof this studywasto identify
parkingorbitsthat wouldprecesssothat tangential
periapsisburnscouldbeperformedat both arrival
anddeparture,aswasassumedin thepreviousstud-
ies (refs.2-7).Becausethepresentstudytakesinto
accountthe precessioneffectscausedby an oblate
Marson theparkingorbit, theresultinggeometries
at arrivalanddeparturewererealisticallysimulated
to obtaintheseminimumburnparkingorbits.This
orbit selectionstrategywasinitiatedto minimizethe
initial LEO massand simultaneouslyenhancethe
potentialto satisfyanysciencerequirements.

Becausethe parkingorbit obtainedfrom the
abovetwostrategiesaffectsthe ascentand descent
conditionsfor the Marsexcursionmodule(MEM),
the MEM massmustbe analyzedfor the various
parkingorbit inclinationsand eccentricities.In so
doing,the effectsof theMEM masson the overall
missionprofile(hence,the initial LEO mass)canbe
betterunderstood.

Vehicle Characteristics and Mission

Scenario

The baseline vehicle and interplanetary mission

profile are based on the requirements of an initial

manned exploration scenario (refs. 2-4). The inter-

planetary transfer vehicle used in this analysis is sim-

ilar to that developed by Tucker et al. (fig. 1 and

ref. 8), and its mass breakdown is given in table 1.

Note that a range of Mars excursion module (MEM)
masses is given, which was calculated for the vari-

ous parking orbit characteristics considered in this

analysis. In this study, liquid oxygen/liquid hydro-
gen (LOX/LH2) rocket engines with a vacuum spe-

cific impulse (Isp) of 480 sec were used for the trans-
fer vehicle, and the corresponding tankage mass for
the transfer vehicle and the MEM was assumed to

be 10 percent of the required propellant mass. The

two habitation modules of the spacecraft, which have

been adapted from space station hardware, are at-

tached to either end of a rotating truss structure to

provide an artificial gravity environment. Also in-
cluded aboard the interplanetary transfer vehicle is

the MEM. The MEM, whose characteristics are given

in table 2, comprises all vehicle components required

for descent to, exploration of, and ascent from the
Martian surface.

The mission scenario, which was adopted for the
present study, is described as follows. The inter-

planetary transfer vehicle departs from a circular low

Earth orbit (hp = 500 km). Upon arrival at Mars,
the vehicle performs a tangential burn (AV1) to the

inertial planetocentric velocity vector at periapsis of

the approach hyperbola for insertion into a parking

orbit (fig. 2(a)). Following insertion, the MEM sep-
arates from the interplanetary transfer vehicle and

then using AV2, circularizes at the periapsis alti-

tude (fig. 2(b)). Once circularization is completed,
the MEM descends to the Martian surface via AV3.

After performing the necessary excursion operations,

the MEM ascends to a phasing orbit where an apo-

apsis burn (AV4) is performed so that rendezvous
with the interplanetary transfer vehicle can occur in

the parking orbit (fig. 2(c)). At the end of the 60-day
stay time, the MEM is discarded and a departure

burn, AV5 (tangential or 3-D), is performed at some

true anomaly (t_) for Earth return (fig. 2(d)). Upon

Earth arrival, the habitation modules and support
structure are discarded before the propulsive maneu-

ver for Earth-orbit insertion, and only the manned

capsule (ref. 9) is inserted into an orbit with a period

of one Earth day (1 Sol) and at hp = 500 km. Note
that the appropriate propellant tankage is discarded
after each burn.



Analysis

Interplanetary Trajectory and Parking
Orbit Characteristics

Because the analysis of interplanetary trajec-

tory and parking orbit characteristics is performed

through a series of mass-ratio calculations, the re-

sults presented apply to any vehicle design provided

that three conditions remain nearly constant: (1) the

propulsion systems must be similar in terms of Isp
and tank-mass fraction, (2) the ratio of mass left be-

hind at Mars to Earth return payload must be com-

parable, and (3) the use of impulsive velocity addi-

tions is valid. The mass ratio (Mi/Mf) represents
the mass in kilograms that must be placed initially
into LEO for every kilogram of mass returned to LEO

at the end of the mission. For example, the vehicle

described in the analysis has a mass of 6.8 × 103 kg at

Earth return. Thus, a Mi/M] of 150 would require

an initial LEO mass of 1.02 × 106 kg.

The parking orbit analysis was performed for the

interplanetary mission profile that is described in the
Introduction and has the following dates (fig. 3):

Chart A

Earth departure .....

Venus swingby ......
Mars arrival .......

Mars departure ......
Earth arrival .......

April 4, 2017

September 9, 2017
March 23, 2018

May22, 2018

November 13, 2018

This profile is for a typical opposition-class mis-
sion taken from the set of opportunities presented

in reference 2. It includes a Venus swingby on the

outbound Earth Mars trajectory leg and has a to-

tal trip time of 1.6 years. For this mission profile,
the AV values for Earth departure and arrival are

4.17 km/sec and 1.13 km/sec, respectively. The ar-
rival and departure hyperbolic excess velocity vec-

tors at Mars can be described (with respect to Mars)

in terms of right ascension (a), declination (5), and

hyperbolic excess velocity (Voc) as follows:

Chart B

Arrival Departure

a = 253.99 ° a = 212.57 °

5 = -21.4 ° 5 = -12.5 °

V_= 5.441 km/sec V_= 3.873 km/sec

These interplanetary conditions were generated

with the Swingby-Stopover Optimization Program
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(SWISTO) (ref. 10), which uses a 3-D patched conic
approach. As a result of the patch-conic two-body

approximation, the position vector at the sphere of

influence (SOI) is not uniquely defined. Therefore,

numerous parking orbit inclinations may be achieved.

However, as Tolson (ref. 11) demonstrated for any
hyperbolic approach, if only a tangential burn is per-

formed, the arrival declination (Sarr) of the velocity

vector limits the achievable parking orbit inclination.

The advantage of using a tangential burn over a 3-D

burn is that no change in direction of the velocity
vector is required, thus reducing the size of the burn

and, hence, the initial LEO mass. Therefore, one of

the objectives of this study was to obtain parking

orbits that used tangential burns. As a result, the

achievable range of orbital inclinations (i) at arrival
is

]_Sarr[ < i < 180 ° -[Sarr[

However, because of the round-trip mission profile,

the orbital geometry at Mars departure also needs to
be considered in the selection of the parking orbit

inclination, To achieve the departure hyperbolic

asymptote with a tangential burn, the parking orbit
inclination at the end of the stay time has to be

greater than or equal to the departure declination

(Sdep) of the hyperbolic asymptote or less than or
equal to 180 ° minus the declination. That is, the

possible range of orbital inclinations at departure is

[6dep[ < i < ]80° --[6dep]

This criterion adds another restriction on the possi-

ble range of parking orbit inclinations. Therefore,
accounting for both arrival and departure geome-

tries and the use of tangential burns, the achievable

range of parking orbit inclinations is determined by

the maximum declination (Smax) between the arrival
and departure velocity vectors. Hence, the achievable

range of orbital inclinations for a round-trip mission
using tangential burns upon arrival and departure is

[Smaxl < i < 180 ° -15m_l

For this mission profile, any inclinations between

21.4 ° and 158.6 ° were possible, based on 5arr = 21.4 °.

If inclinations beyond this range are desired, either
a 3-D burn upon arrival or an additional propulsive

maneuver after orbit insertion is required. In addi-

tion, an upper limit on the period of the parking orbit

of one Martian day (1 Sol) was also imposed because

of concerns that an orbit with a longer period would
result in the MEM approaching escape velocity dur-

ing the ascent and rendezvous phases. This orbital
period limitation constrains the eccentricities allowed



in the parkingorbit. As a result,thevariousincli-
nations(i) and eccentricities(e) consideredin the
parametricportionof thisanalysiswereasfollows:

i = 21.5 °, 40 °, 60 °, 75 °, 90 °, 105 ° , 125 °, 145 °,

and 158.5 °

e = 0.05, .25, .50, .75, .809 (hp = 500 km, 1 Sol),

and .821 (hp = 250 km, 1 Sol)

This analysis was performed for periapsis altitudes
of 250 km and 500 km. These altitudes were selected

for consistency with sizing and mass estimates of the

MEM subsystems (ref. 7).

Trajectory Simulation: Parking Orbit

Targeting

A parametric study was first performed in this

analysis, where the inclination and eccentricity of the

parking orbit were varied to determine the AV values
for Mars insertion and departure trajectories. For

this strategy, trends of initial LEO mass versus in-

clination and eccentricity were developed. Secondly,

an exact precession orbit was sought. This orbit is

defined as a parking orbit that would precess such

that a tangential periapsis burn could be performed
at both arrival and departure. General perceptions

suggest that an exact precession orbit should result
in the lowest initial LEO mass for a given parking

orbit eccentricity, because no change in direction of

the arrival or the departure velocity vector would be

required.

In the parametric study, specific inclination and

eccentricity of the parking orbit were targeted from

the arrival interplanetary asymptote at the sphere of

influence (SOI). After the 60-day stay time, a 3-D
departure burn was used at periapsis to achieve the

proper departure hyperbola for Earth return. By se-

lecting the parking orbit inclination and eccentric-

ity, the initial position on the edge of the SOI for

the arrival asymptote was fixed. Thus, this problem
was defined by three constraints (the right ascen-

sion (c_), declination (6), and the magnitude (Vet)

of the departure hyperbolic excess velocity vector at

the SOI) and three control variables (the in-plane

('7) and out-of-orbital-plane (_) angles defining the
departure burn direction and the magnitude of the

departure burn (AV). The effect of departing from

a location other than periapsis was also analyzed in

this study. This strategy added an additional control,

the true anomaly at departure (0), to the definition

of the problem stated above.

For the exact precession study, the initial posi-

tion on the SOI (therefore, inclination of the parking

orbit), the energy of the parking orbit (hence, its

eccentricity, knowing the periapsis altitude), and the

magnitude of the tangential periapsis departure burn

were optimally selected to match the requirements of

the departure hyperbola. Because the parking orbit
inclination and eccentricity were not specified, the

initial position on the edge of the SOI and the en-

ergy of the parking orbit were variable. This condi-
tion added three controls and one constraint to the

targeting process. The three controls were the en-

ergy of the parking orbit and two of the three posi-

tion variables x, y, or z. The third variable can be
determined from the other two and the magnitude of

the SOI radius from the planet because the position
vector must be at the SOI. The one constraint was

the periapsis altitude. Because the departure burn
direction was fixed (tangential), two controls (_ and

fl) were eliminated from the targeting process and
only the magnitude of the departure burn remained
a variable. Therefore, this exact precession problem

was defined by four constraints (a, 6, and Voc for the

departure hyperbolic asymptote and the periapsis al-

titude of the parking orbit) and four control variables

(x, y, energy of parking orbit, and departure AV).

In this manner, Mars arrival and departure AV
values were obtained. With all the AV values now

defined (i.e., for Earth departure, Mars arrival, Mars

departure, and Earth arrival) and the dry mass of

the vehicle known (table 1), the rocket equation may
be used to determine the propellant requirements of

the vehicle and, thus, the initial LEO mass of the

vehicle. The rocket equation can be expressed as

AV = Isp g In (rni/ml)

where Isp is the vacuum specific impulsive, g is the
Earth's surface gravitational acceleration, and m i

and m I are the spacecraft masses prior to and just
after the propulsive maneuver (AV), respectively.

Note that losses due to all external forces (e.g.,

gravity, drag, thrust misalignment, etc.) in the rocket

equation were neglected in the determination of the
initial mass of the vehicle in LEO.

Mars Excursion Module

To realistically model the effects of the various
Mars parking orbit characteristics (i.e., inclinations

and eccentricities), ascent and descent trajectory
simulations for the MEM were calculated for nu-

merous inclinations, eccentricities, and periapsis alti-

tudes. Thus, the variation in the MEM mass shown
in table 1 is a result of these various parking orbit

characteristics. The propellant and tankage masses

required for each of these cases were then included in



the calculationof the entireinterplanetarytransfer
vehiclemassin LEO.

Descent trajectory. Descent to the Martian

surface was simulated as follows (fig. 2(b)): After a
parking orbit was established, the descent to the sur-

face was accomplished by separating the MEM from

the interplanetary transfer vehicle and performing a

circularization burn (AV2) at periapsis. Circulariza-

tion of the MEM orbit is desirable before deorbiting

because tile AV to deorbit is the same for any point
within this orbit. This strategy allows the MEM to

descend to the northern as well as southern latitudes,

and provides a day or night landing capability with-

out a significant cross-range requirement, as long as
the landing site latitude is less than the inclination

of the parking orbit. By circularizing the orbit, the
descent is decoupled from the orbital insertion ma-

neuver. This procedure allows greater access to the

Martian surface because the descent geometry is no
longer fixed as is the case for a direct descent from the

parking orbit. For direct descent from the parking or-

bit, the periapsis of the parking orbit must be over
the landing site latitude_ This requirement places an

additional demand on the orbital geometry between

the arrival hyperbolic asymptote and the parking or-

bit and could severely restrict the number of possi-

ble Mars parking orbits. Therefore, circularizing the
MEM orbit increases mission flexibility. Once circu-

larization is complete, a deorbit burn (AV3) is per-

formed to initiate the entry and landing sequence.

Deorbit AV values and the propellant usage were
calculated with the assumption of a Hohmann trans-
fer from the current circular orbit to a transfer orbit

with a zero vacuum periapsis altitude (i.e., no atmo-

sphere was assumed for Mars). A 10-percent margin
was assumed in all descent AV values to account for

the fuel required for retro firing at touchdown and
any other incidental burns during descent.

Ascent trajectoryl To simplify the ascent anal-

ysis, an equatorial landing site was arbitrarily as-

sumed so that rendezvous with the interplanetary

transfer vehicle left in the parking orbit (fig. 2(c))

can be accomplished over the entire range of incli-
nations considered in this study. This assumption

imposes a maximum penalty, in terms of AV, for a

retrograde (due west) launch, whereas a minimum

estimate of AV is obtained for a direct (due east)
launch as a result of the planet's rotation. For non-

equatorial landing sites, the ascent AV woui_ fal ! be-
tween the estimates mentioned above. A pitch rate

steering guidance law was used to simulate the as-

cent trajectory for a single-stage vehicle which max-

imized the MEM mass inserted into a phasing or-
bit. Once in orbit at this intermediate altitude, the

MEM performed a Hohmann transfer burn (AV4) at

apoapsis to achieve the parking orbit of the transfer
vehicle for rendezvous. The Martian atmosphere was

simulated with the Committee on Space Research

(COSPAR) northern hemisphere summer mean den-

sity model (ref. 2) whereas coefficient of drag (CD)

versus Mach number of the Apollo capsule was used

to approximate the MEM aerodynamics (ref. 12). A

10-percent margin was also assumed in all ascent

AV values to account for any burns required during
rendezvous.

Using the MEM characteristics shown in table 2,

a parametric study of inclination, eccentricity, and

periapsis altitude was performed, from which ascent
and descent AV values were determined. The rocket

equation was then used to obtain the mass of the

MEM for these various parking orbit characteristics.

Gravitational Model

The acceleration of a spacecraft acted upon by a
central attracting body is

d2r OU OU . OU£
VU= +-Sjyj + Oz

where r is the position of the spacecraft, t is time,
and U is the gravitational potential.

The gravitational potential for a spherically sym-

metric mass body is #/r. However, Mars is not spher-
ically symmetric but is bulged at the equator and

flattened at the poles, similar to Earth. To account

for this nonuniform mass distribution, the following
potential was used:

U=it [1- fi (_) nJnPn(sinL)]rn=2

where it and req are the gravitational parameter and
equatorial radius of Mars, respectively, Jn are the

zonal coei_cients, Pn are Legendre polynomials, and

L is the geocentric latitude (ref. 13).

The above potential considers only the effects of
the zonal harmonics, which are the dominant har-
monics for Mars. These harmonics take into account

the mass distribution that is rotationally symmetric

about the north-south axis (i.e., the harmonics are



latitudedependentonly).Thenumericalvaluesused
for thezonalcoefficientsin thisanalysisforMarsare:

J2 = 1.9595 × 10 -3

J3 = 3.5837 × 10 -5

J4 = -1.1772 × 10 -5

J5 = 9.0793 × 10 -6

J6 = -3.1549 × 10 -7

Normalized zonal coefficients were obtained from

references 14-16, averaged, and then unnormalized

by Kaula's rule of thumb (ref. 17) to produce the

above values. In these references, the zonal coef-

ficients for Mars were determined by tracking the

Mariner 9 space probe and the Viking 1 and 2 space-
craft orbiting the planet. Figure 4 shows schemati-

cally the geometrical shape associated with each of

these zonal coefficients Jn. The largest term for

Earth and Mars is J2, which indicates the flatten-

ing of the planet (i.e., it accounts for the equatorial

bulge). The J3 term corresponds to a tendency to-

ward a triangular shape, J4 toward a square shape,

and so forth. Of note is that all the geometrical

shapes depicted are positive zonal coefficients. By
superimposing these harmonics, it is possible to ap-

proximate any gravitational field that is symmetric
about the polar axis.

Computational Tools

Program to Optimize Simulated Trajecto-

ries (POST). The orbital and ascent analyses in

this study were performed with the Program to Opti-

mize Simulated Trajectories (POST) (ref. 18). POST
was initially developed by the Martin Marietta Cor-

poration as a Space Shuttle trajectory optimization

program. Since that time, POST has been used to

solve a wide variety of atmospheric ascent, reentry,

and orbital transfer problems near an arbitrary, ro-
tating, oblate planet, where the equations of motion

within POST are integrated numerically. By per-

turbing the independent variables (controls) with re-

spect to each dependent variable (constraint) from
an initial estimate of the controls, partial derivatives

are determined and a projected gradient method is

used to improve the controls in order to solve (tar-
get) the particular problem. Targeting occurs when

the constraints are satisfied within the user-specified
tolerances.

Semianalytic methods. Since this work was

completed, semianalytic approaches of solving these

types of problems have been developed which can

reduce the computation time of the analyses

(refs. 19 21). These approaches in references 19-21
consider the actual geometry between the arrival and

departure hyperbolic asymptotes and the parking or-
bit, along with the precession effects caused by the

oblateness of Mars, in calculating the arrival and de-

parture AV values. References 19 and 20 describe

the calculation of Mars parking orbits that use ei-

ther (1) a tangential periapsis arrival burn and an

in-plane departure burn, (2) an in-plane arrival burn

and an in-plane departure burn, or (3) a tangential
periapsis arrival burn and a 3-D departure burn, as

in the case of the parametric strategy of the present

study. Reference 21 describes the calculation of Mars

parking orbits that uses tangential periapsis burns at

both arrival and departure, as in the case of the exact

precession strategy of the present study.

Results and Discussion

Effects of Oblateness

Previous studies have assumed Mars to be a

spherical planet in order to obtain an initial esti-

mate of a vehicle's initial mass in LEO (refs. 2-6,

8, and 22). Under this assumption, a parking or-

bit will not precess and, thus, will remain in the

same plane at departure as it was in upon arrival

(fig. 5). Because Mars is oblate, the parking orbit will

precess, which results in a different departure plane
(fig. 6). This change in the departure condition may

drastically affect the Mars departure AV for Earth

return and, therefore, the initial LEO mass of the

vehicle. Table 3 shows a comparison between a pre-

vious study that neglected precession (ref. 2) and the
present study, which includes precession. As seen, a

large increase in the LEO mass (about 50 percent) is
required for the same parking orbit, when the actual
departure geometry is considered. Thus, the incor-

rect assumption of using a spherical planet in these

previous studies could produce a misleading estimate

of the initial LEO mass. Hence, to obtain a more re-

alistic determination of the mass of a vehicle in LEO,

precession effects need to be considered in any orbital
analyses.

Because the longitude of ascending node and the
argument of periapsis determine the orientation of

the parking orbit about the planet, their motion af-

fects the departure conditions for Earth return and,

hence, the initial LEO mass. The two most signifi-
cant effects of oblateness on an orbit are the move-

ment of the longitude of ascending node and the

argument of periapsis. The parameters that effect

these motions are the eccentricity, inclination, and



periapsisaltitude of the parkingorbit, alongwith
the lengthof the staytime. Figures7 and8 show
the changein tile longitudeof ascendingnode(_t)
andtile argumentof periapsis(w),respectively,ver-
suseccentricityfor variousinclinationsfor a 30-day
Marsstaytime.Asseenfromthesefigures,thelowcr
theeccentricityof theorbit andthemoreequatorial
the inclination(i.e.,for a very lowor high inclina-
tion), the higherthe precessionof _ and w. Thc

effect of periapsis altitude on w is shown in figure 9,

where again the lower the eccentricity of the orbit

and the lower the periapsis altitude, the higher the

precession. To first order, the longitude of ascend-

ing node and the argument of periapsis change lin-
early with time; hence, the longer the stay time, the

greater the change. Therefore, knowledge of how a

parking orbit precesses is essential in minimizing the
initial LEO mass of the vehicle.

Ascent and Descent of the MEM

Ascent and descent AV calculations for the MEM

arc shown in figurcs 10-12 for periapsis altitudes of

500 km and 250 km. Figure 10 shows a near linear
variation in descent AV with eccentricity; that is,

the higher the eccentricity of the parking orbit, the
greater ttle descent AV required. Figures 11 and 12
show the influencc of inclination for the various ec-

centricities on the required ascent AV. As seen, the

ascent AV increases with inclination, as expected.

This increase in AV is a consequence of the rota-

tional velocity of the planet. For low inclinations,
smaller AV values are required because the ascent is

in the same direction as the planet's rotation. How-

ever, as the inclination increases, a smaller compo-

nent of the planet's rotational velocity aids in the
ascent. As the inclination exceeds 90 ° (retrograde

orbit), the planet's rotational Velocity is in the oppo-
site direction compared with the ascent and, hence,

becomes a detriment. As a result, larger and larger

AV values are required to overcome the planet's ro-

tational velocity for launch. Additionally, figures 11
and 12 show that as the eccentricity increases, larger
AV values are needed on account of the increased

energy requirements of the parking orbits.

With these AV values and the MEM characteris-

tics in table 2, MEM masses were calculated and arc

shown in figures 13 and 14. A similar trend in the
MEM mass versus inclination and eccentricity of the

parking orbit is observed, as compared with the as-

cent AV values of figures 11 and 12. Prom figures 11

and 12, a maximum penalty of about 0.6 km/sec is

imposed on a due west launch when compared with a
due east launch. This penalty translates into a max-

imum increase of about 13 500 kg in the MEM mass
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(for the 1-Sol orbit) as shown in figures 13 and 14.
As seen from these figures, inclination does have some

impact on the mass of the MEM. However, as shown

later, this impact is insignificant compared with the

overall mass of the entire vehicle initially in low Earth

orbit. In fact, the Mars departure AV is the main

driver in determining the parking orbit. Therefore,
the consideration of a parking orbit need not be lim-

ited to only direct orbits, but should be expanded

to include retrograde orbits. Additionally, the fig-

ures also show that periapsis altitude does not sig-

nificantly affect either the ascent and descent AV
values or the MEM mass.

Parametric Study

Figures 15 through 20 show the vehicle mass ratio

in LEO (Mi/M/) versus inclination for various eccen-
tricities and departure conditions. One clarification
needs to be made about figures 15-20. The curves

displayed are the best possible match to the data.
For the higher eccentricities, continuous curves are

shown. However, for the low eccentric orbits, only

computed points are displayed because exact curve

fits were not possible on account of the large vari-
ation in the data. If calculations were made with

a smaller increment in inclination (for the lower ec-

centricities), the computed points would fall closer

together and result in a smooth curve fit.

Figures 15 and 16 show a large variation in the
mass ratio in LEO for a periapsis departure from

the parking orbits considered. As seen in these two
figures, certain combinations of the orbital parame-

ters (especially those with low eccentricity) induce a

drastic mass-ratio penalty. Ranges in Mi/M/ from
about 150 to 1900 are scen for these two periapsis

altitudes. This result suggests that periapsis (true

anomaly of 0°) is not typically the optimum loca-
tion for a departure burn. Therefore, the parametric

analysis was repeated to determine the effect of true

anomaly on minimizing the departure AV (hence,

the mass ratio).

The results from an optimization of the departure

location, or true anomaly, are shown in figures 17

and 18. As seen from these figures, Mi/Mf has been
drastically reduced from an initial range of 150-1900

to a new range of 140 450, and, indeed, periapsis
is not the best location for a departure burn for

most of the orbits. However, in the search for the

best departure location, an optimization problem
within POST was encountered. Many local minima

were found which complicated the search for the

departure true anomaly that resulted in a minimum

departure AV. Therefore, a global minimum was
not always found. Figure 19 shows this effect for the



e = 0.75 curve from figure 17. Using different initial
conditions, the analysis was repeated for the first two

points (i = 21.5 ° and 40°). As seen, much lower mass
ratios were produced and, hence, a more favorable

departure location, or true anomaly. Therefore, to

obtain exact and precise plots of the LEO mass ratio,

a parametric study in true anomaly must also be
performed along with inclination and eccentricity to

determine the minimum departure AV. Because

many local minima exist, a better global optimizer

is necessary to determine the optimum true anomaly

that yields the minimum departure AV.

As a result of this behavior, a parametric study'

in true anomaly was performed for three inclinations

(i = 21.5 °, 90 °, and 158.5 °) for the 1-Sol parking

orbit with a periapsis altitude of 500 km (e = 0.809).
Figure 20 shows the results for periapsis departure

(from fig. 15) and those for an optimized departure

location. As seen, a penalty is imposed when a

periapsis departure is required in this mission profile.

The size of this penalty depends upon the inclination

of the orbit. In this case, a large penalty in the LEO
mass ratio is imposed for inclinations less than 90 ° .

Figure 20 also shows that for the optimized de-
parture curve, lower values of the mass ratio in LEO

are obtained for both posigrade and retrograde or-

bits with near-equatorial inclinations (i.e., for very

low or high inclinations). As a result, these orbits

are favorable from the point of view of mission per-

formance (i.e., lower mass ratio). However, because

of their limited planetary coverage, equatorial orbits
display poor characteristics for scientific observations

and landing site accessibility. Therefore, if a non-

equatorial orbit is required to improve the poten-

tial for satisfying scientific and landing site require-

ments, a penalty in mission performance (i.e., higher
mass ratio) is induced. For example, to achieve a

polar orbit, an increase in Mi/M f of approximately
50 percent is required, as seen in figure 20.

In summary, a few general statements concerning

parking orbit selection can be made from these para-

metric results: (1) Periapsis altitude does not have
a major impact on the LEO mass ratio, as seen in

figures 17 and 18. Most values of Mi/MI are in the
range from 150 to 300 for both altitudes. Because

a variation in the mass ratio is present, the choice

of a parking orbit cannot be made arbitrarily, and a
thorough analysis is required to minimize the initial

LEO mass. (2) No one particular eccentricity is fa-
vorable for the entire range of inclinations. In fact,

a low eccentricity (e = 0.50) is favored over a high

eccentricity (e = 0.75 or 1-Sol orbit) for intermedi-

ate inclinations (i _ 45 ° 85 °) for both periapsis al-

titudes. (3) Periapsis is not necessarily the optimum

location for a departure burn for a majority of the

orbits as shown in figure 20. (4) Also from figure 20,

a retrograde parking orbit (i = 158.5 °) can result in

a lower mass ratio than a direct orbit (i = 21.5°).

Therefore, the increase in the MEM mass associated

with retrograde orbits is not of enough significance
to disallow their use.

Exact Precession Study

One way of minimizing the penalty in mission

performance, while still achieving scientific require-

mcnts, is to search for an exact precession parking

orbit; that is, a parking orbit that precesses such that

a tangential periapsis burn can be performed at both

arrival and departure. General perceptions suggest
that this tangential, periapsis-to-periapsis transfer

(for a given parking orbit eccentricity) would result

in thc lowest initial LEO mass, because no change

in the direction of the arrival or departure velocity

vector is required.

From this study, only a finite number of exact pre-

cession orbits were found to exist. The problem in
using exact precession orbits arises from the require-

ment that an alignment of the argument of periapsis

(w), the longitude of ascending node (f_), and the

true anomaly (0) is necessary before a tangential de-

parture burn can be performed at periapsis. Because
these elements precess at different rates, there are

only a few combinations of these parameters that re-

sult in a tangential periapsis departure burn for a

given stay time and periapsis altitude. For example,

consider a parking orbit (hp = 250 km) with a stay
time of 60 days and an inclination of 90 ° (a polar

orbit) such that the arrival (initial) and departure

(final) f_, co, and 0 are

Chart C

Initial Final

= 253.9 ° 9t = 32.6 °

w = 265.2 ° w = 76.4 °

0 = 0° 0 = 0°

in order to perform a tangential periapsis burn upon

arrival and departure. An eccentricity for the park-
ing orbit may exist that will regress the argument

of periapsis such that, at departure, co = 76.4 °. How-

ever, because the longitude of ascending node does

not preeess for a parking orbit with an i = 90 ° (for

the gravity model used in this analysis), as shown

in figure 7, there is no eccentricity that will rotate

the longitude of ascending node from f_ = 253.9 ° at
arrival to ft = 32.6 ° at departure. Therefore, an

exact precession parking orbit, which precesses both



the longitudeof ascendingnodeandtheargumentof
periapsissuchthatatangentialperiapsisburncanbe
performeduponarrivalanddeparture,isnotpossible
for this inclination.

For other inclinations, an eccentricitythat
changesthe longitudeof ascendingnodeto its de-
parturevaluemay be obtained;however,this ec-
centricitymostlikely will not changetheargument
of periapsisto its departurevaluebecauseit pre-
cessesat a differentrate than the longitudeof as-
cendingnode. As anexample,considera parking
orbit (hp-- 500km) with astaytimeof 60daysand
i = 30 °, where the initial and final conditions for a

tangential periapsis burn are

Chart D

Initial Final

f_ = 296.7 ° f_ = 10.1°

w=238.9 °

0=0 o 0=0 °

w = 90.5 °

For this parking orbit, e = 0.135 causes _t to

regress to its final value of 10.1 °. However, the value

of w (for this inclination) at the end of the stay
time is 330.6 °, and, once again, an exact precession

parking orbit is not possible because the two elements

(ft and co) precess at different rates. As a result of

this difficulty, only a limited number of inclinations
and eccentricities will produce an exact precession

orbit. Therefore, the determination of the inclination

and eccentricity that yields an exact precession orbit

is complicated because numerous combinations of
inclinations and eccentricities must be examined.

The true anomaly criterion (0 = 0° at arrival and

departure) is necessary for the determination of an

exact precession orbit. However, this criterion is
not difficult to satisfy because 0 is an independent

variable and, therefore, does not explicitly depend on
the inclination or eccentricity of the parking orbit.

In this study, nine exact precession orbits were

found, five for a periapsis altitude of 500 km and
four for a periapsis altitude of 250 km (for this

interplanetary mission profile). Tables 4 and 5 list
the various characteristics of these orbits and other

orbits of interest (from the parametric results) for
the two periapsis altitudesl Note that the orbits are
numbered for reference. As seen in tables 4 and 5,

exact precession orbits occur only at low to moderate

eccentricities, ranging from near circular (e = 0) to

about 0.44, for this mission profile. This outcome

is a consequence of the requirement for a proper

alignment of f_, co, and O, where the need for sufficient
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precession of these parameters (required for a proper

alignment) drives the eccentricity of exact precession
orbits toward zero. As a result, exact precession

orbits tend to be low-energy orbits.

Comparison of the orbits given in tables 4 and 5

shows that exact precession orbits can result in low

mass ratios. However, for the mission profile used in

this analysis, an exact precession orbit was not found

to yield the absolute minimum mass ratio, even with
the use of tangential periapsis burns, which is con-

trary to general perception. This result is due to the

lower energy state of exact precession orbits, thus re-

quiring larger AV values than for some of the 1-Sol

(higher energy) orbits. Therefore, from these results,
an exact precession orbit should not necessarily be

selected if minimizing the mass ratio in LEO is tiie

main objective of the mission. For this interplane-

tary mission profile, 1-Sol orbits with an inclination
of 158.5 ° and 3-D departure burns yield minimum

mass ratios of 141.5 and 138.8 for periapsis altitudes

of 500 km and 250 km, respectively. However, be-

cause these orbits are near-equatorial, they may be
poor selections from a scientific standpoint and limit

the choice of potential landing sites. Therefore, a

penalty in mission performance is required to obtain
a more favorable inclination for these science require-

ments. In comparison with the i = 158.5 °, 1-Sol or-

bit (e = 0.809 and 0.821), figures 21 and 22 show the
percent increase in the LEO mass ratio required for
achieving the various parking orbits listed in tables 4

and 5 for the two periapsis altitudes. For example, to
achieve a more favorable inclination from a scientific

standpoint, increases in Mi/Mf of 46.1 percent (orbit
no. 9 in fig. 21) and 49.6 percent (orbit no. 8 in fig. 22)

are imposed for achieving a polar orbit for periapsis

altitudes of 500 km and 250 km, respectively.

The advantages of using exact precession orbits
are that lower eccentricities and more favorable in-

clinations are possible without a drastic penalty in

mission performance. Penalties of only 2.7 percent

and 0.07 percent in Mi/Mf are required for the ex-
act precession orbits with i = 70.7 ° , e = 0.381,

hp = 500 km (orbit no. 1 in fig. 21) and i = 71.1 ° ,

e = 0.436, hp = 250 km (orbit no. 1 in fig. 22), respec-
tively. Note that this penalty in mission performance

is minimal. To obtain a comparable inclination

(i = 75 °) for the 1-Sol orbits, increases of 41.3 per-

cent (orbit no. 8 in fig. 21) and 43.3 percent (orbit

no. 7 in fig. 22) in _,li/M[ are required for periapsis
altitudes of 500 km and 250 km, respectively.

Therefore, if the arrival characteristics (inclina-

tion and eccentricity) of the parking orbit are prop-

erly chosen rather than arbitrarily selected, favorable
departure conditions (i.e., a tangential periapsis



departureburn)canbeobtainedthat resultin lower
mass-ratiopenalties. Hence,by choosingexact
precessionorbits,globalscientificobservationsand
candidatelandingsitescan be increasedwithout
sacrificingmissionperformancesignificantly.

Conclusions

Thisinvestigationwasinitiatedto identifytrends
and aspectsof Mars parkingorbits for an initial
mannedmission. This analysispertainedto the
followingmissionprofile:

Earthdeparture.....
Venusswingby......
Marsarrival .......
Marsdeparture......
Eartharrival.......

April4,2017
September9,2017

March23,2018
May22,2018

November13,2018

with Earthdepartureandarrivalvelocityincrement
(AV) valuesof 4.17km/secand1.13km/sec,respec-
tively,andMarsarrivalanddeparturehyperbolicex-
cessvelocityvectorsof

Arrival
= 253.99°

5 = -21.4 °

Departure

= 212.57 °

5 = -12.5 °

V_c = 5.441 km/sec V_c = 3.873 kin/see

where a is the angle of right ascension, 5 is the angle

of declination, and Vcc is hyperbolic excess velocity.
The following conclusions are made:

(1) Precession has a drastic effect on departure AV
and, hence, on the initial mass in low Earth

orbit (LEO). Therefore, a parking orbit cannot be
chosen arbitrarily, and a detailed analysis must be

performed to obtain an optimum parking orbit.

(2) Both the Mars excursion module (MEM) mass
and the overall interplanetary vehicle mass in

LEO are insensitive to periapsis altitude of the

Mars parking orbit; however, both are sensitive

to the inclination and eccentricity of the orbit.

(3) The departure true anomaly must be considered

along with inclination and eccentricity of the

parking orbit in determining the minimum depar-
ture AV and, hence, the minimum initial LEO
mass.

(4) The choice of parking orbit inclination at Mars

should not be limited to direct orbits only.

Retrograde orbits can possibly result in lower ini-

tial LEO masses, even with the increase in MEM
mass associated with their use because of smallcr

Mars departure AV values.

(5) Higher eccentricities (e.g., a 1-Sol orbit) do not

necessarily imply minimum initial LEO masses.

For some inclinations, a lower eccentricity is
favored.

(6) The absolute minimum initial LEO mass was ob-

tained for a highly eccentric parking orbit that
did not precess exactly and required a three-

dimensional (3-D) departure burn (i.e., a burn

with an in-plane and an out-of-plane AV com-

ponent). Therefore, a 3-D departure burn need

not imply mission inefficiency.

(7) Minimum initial LEO masses were observed for

parking orbits characterized by having near-
equatorial inclinations, high eccentricities, and

3-D departure burns. However, because near-

equatorial inclination orbits have poor planetary

coverage characteristics, they are not desirable
from a science viewpoint. Therefore, to enhance

the potential for satisfying science requirements,

a penalty in mission performance (initial LEO
mass) may be imposed. This penalty can be min-

imized with the use of an exact precession orbit

(i.e., an orbit that precesses such that tangential
periapsis burns can be performed at both arrival

and departure).

(8) The advantage of using an exact precession or-

bit, in comparison with an orbit that is chosen

arbitrarily and requires a 3-D departure burn, is
that lower eccentricities and more favorable in-

clinations (i.e., better scientific rcquirements) are
obtainable without significantly increasing initial

LEO mass (i.e., decreasing mission performance).

For this mission profile, exact precession orbits
were not found to yield the lowest initial LEO

mass; however, they may for other manned Mars

mission profiles.

In summary, the selection of a final Mars park-
ing orbit, for a particular mission, cannot be based

purely on mission performance. A trade-off between

the conflicting requirements of mission performance,

scientific observations, and landing site accessibility

must be made in the selection of an optimum Mars
parking orbit.

NASA Langley Research Center
Hampton, VA 23681-0001

October 21, 1992
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Table 1. Estimate of Vehicle Dry Mass

Vehicle component Mass, kg

Two habitation modules (ref. 8) 43 200
Truss structure and support equipment (ref. 2) ll 000

Earth return capsule (ref. 9) 6 800
MEM 34 000 82 400

TotM mass at Mars arrival 95 000-143 400

Total mass at Mars departure 61 000
Total mass at Earth arrival 6 800

Table 2. MEM Characteristics

Initial dry mass before deorbiting (ref. 7), kg ........... 21 400

Final dry mass after rendezvous (ref. 7), kg ............ 2420

Liftoff T/W (on Mars) ...................... 1.3

Reference diameter (ref. 7), m .................. 9.754

Length of stay time, days .................... 60

Crew (ref. 7) .......................... 4

Isp (ref. 7), see ......................... 360.5

Table 3. Effect of Oblateness Upon Mission Performance

Parking orbit

analysis conditions

Neglecting

precession

Including

precession

Parking orbit

characteristics

i = 90 °

e = 0.809

hp = 500 km
i ----90 °

e = 0.809

hp = 500 km

nVins_

km/sec

2.72

2.72

A Vde p ,

km/sec

1.62

4.27

Departure

burn

direction

Assumed

tangential
0 = 0 °

-7 = 30 °

/3 = 90 °
0 = 0 °

Initial LEO

mass,

kg x 106

0.921

1.42
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Exact
precession

results

Other
results

of interest

Table4. PotentialParkingOrbitsfora PeriapsisAltitudeof 500km

Parking
orbit

number

7

Parkingorbit
characteristics

i = 70.7 °

e = 0.381

i = 135.7 °

e = 0.225

i = 51.5 °

e = 0.0992

i = 133.7 °

e = 0.0358

i = 129.2 °

e = 0.0125

i = 158.5 °

e = 0.809

i = 21.5 °

e = 0.809

i = 75 °

e = 0.809

i=90 °

e = 0.809

/_ _iins _

km/sec

3.28

3.51

3.71

3.81

3.85

2.72

2.72

2.72

2.72

AVdep,

km/sec

2.18

2.43

2.63

2.71

2.76

1.66

2.69

4.10

4.25

Departure

burn

direction

Tangential
0 = 0 °

Tangential
0 = 0 °

Tangential
0 = 0 °

Tangential
0 = 0 °

Tangential
0 = 0 °

7 = 6-3°
/3 = 6.4 °
0 = 336 °

3' = 29-4°

= 21.2 °
0 = 240 °

3` = 21.3 °

= 89.5 °
0 = 311 °

3` = 26.5 °
= 91.8 °

0 = 350 °

Mass ratio

in LEO,

Md #
145.3

155.9

162.9

170.1

172.1

141.5

152.9

199.5

206.7

Mass

in LEO,

kg

0.9880 x 106

1.060

1.108

1.157

1.170

0.9622

1.040

1.360

1.406
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Table5. PotentialParkingOrbitsfor a PeriapsisAltitudeof 250km

Exact
precession

results

Other
results

of interest

Parking
orbit

number
Parkingorbit
characteristics

i = 71.1 °

e = 0.436

i = 21.6 °

e = 0.1684

i = 105.3 °

e = 0.053

i = 119 °

e = 0.005

i = 158.5 °

e = 0.821

i = 21.5 °

e = 0.821

i = 75 °

e = 0.821

i = 90 °

e = 0.821

/_ns _

km/sec

3.18

3.58

3.77

3.85

2.66

2.66

2.66

2.66

A Vdep,

km/sec

2.10

2.50

2.71

2.75

1.65

2.71

4.18

4.36

Departure

burn

direction

Tangential
0 = 0°

Tangential
0 = 0°

Tangential
0 = 0°

Tangential
0 = 0 °

3, = 8.5 °

fl = 9.6 °
0 = 330 °

-y = 30.2 °
fl = 21.9 °
0 = 236.9 °

3' ----21-9°
g = 90.7 °
0 = 310 °

= 27.6 °
fl = 93.2 °
0 = 351 °

Mass ratio

in LEO,

MdMI
138.9

155.1

!66.2

168.3

138.8

150.7

199.0

207.6

_,Iass

in LEO,

kg

0:9445 X i0 g-

1.055

1.130

1.144

0.9438

1.025

1.353

1.412

15



!
!
!

16

13.
£
%

7-
..--I

0
.._1

0
¢o

n

.._t.

,..el

r_

4_

o

o

P_

o
c,

,-4



Parking Parking
orbit orbit

Arrival _hyperbola J \
from J |
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Figure 2. Mission geometries.
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Figure 3. Heliocentric trajectory of baseline mission.
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Figure 4. Geometrical shape of the Lcgcndre polynomials corresponding to the zonal coefficients.
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Figure 5. Geometry between the parking orbit and the interplanetary trajectory for a spherical Mars.
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Figure 6. Geometry between the parking orbit and the interplanetary trajectory for an oblate Mars.
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